反函数公式是y=f﹣¹(x) 。
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣¹(x)。反函数y=f﹣¹(x)。的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就迅圆是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函察启数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。
反函数性质
1、函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
2、一个函数与它的反函数在相应区间上单调性一致。
3、大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中亩没塌C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。