Ramsey定理: Ramsey(1903~1930)是英国数理逻辑学家,他把抽屉原理加以推广,得出广义抽屉原理,也称为Ramsey定理。 Ramsey定理(狭义)的内容:任意六个人中要么至少三个人认识,要么至少三个不认识 证明如下:首源唤先,把这6个人设为A、B、C、D、E、F六个点。由A点可以引出AB、AC、AD、AE、AF五条线段。设:如果两个人识,则设这两个人组成的线段为红色;如果两个人不认识,则设这两个人组成的线段为蓝色。由抽屉原则可知:这五条线段中至少有三条是同色的。不妨设AB、AC、AD为红色。若BC或掘裂缺CD为红色,则结论显然成立。若BC和CD均为蓝色,则若BD为红色,则一定有三个人相互认识;若BD为蓝色,则一定有三个判辩人互相不认识。希望采纳,谢谢o(∩_∩)o
© 版权声明